GFA FORM W1 REV 2.1 (10 JUNE 2023) GUIDELINES WEIGHING OF SAILPLANES AND POWERED SAILPLANES.

These forms and procedures are based on and consistent with GFA Weight and Balance of Sailplanes AIRW-D011 Ver 1.1 issued May 2023. Form W1 has been substantially revised. Please discard all superseded Form W1's that you may have and adopt these improved forms and procedures. The process form on page 2 is for recording of data as the sailplane is weighed. The results are transferred to page 3.

EQUIPMENT LIST AND CONFIGURATION

The equipment list has been further expanded to record more effectively the configuration of the sailplane when it is weighed. It is now on separate pages after the weighing form. This configuration record must be kept with the associated weighing form in the sailplane records.

Be careful when weighing any sailplane to make sure you record the equipment status at the time of weighing. Items such as oxygen bottles, water bags and tail parachutes are often left out, either in error or deliberately, to get a lower empty weight. If the Registered Operator wants these items left out, make sure the placards in the glider clearly state that the relevant items are not included in the weight and balance placards. In extreme cases you may have to provide two sets of weight and balance placards, one with the items installed and one with them removed.

WEIGHING MODELS AND DIMENSION 'a'

A significant change from the previous version of the form is how dimension 'a' is used. In the previous Form W1 the equations were modified so that 'a' was always positive. In this revision the one equation is used and care must be taken to ensure whether 'a' is positive or negative.

If G_1 is ahead of the datum 'a' is a negative number. There is a reminder in each of the weigh model diagrams. Dimension b is *always* the distance between G_1 and G_2 in all models and is always positive.

If using the table method to add weights and moments, the arm of $G_2 = a + b$.

Where a sailplane has its main wheel position at, or very close to, the empty C of G position it is strongly recommended to use **Model 3**.

TRICYCLE UNDERCARRIAGE

For tricycle undercarriage motor gliders (Grob, Dimona etc.), provision has been made for the use of three pad weighing equipment. G₁left and right boxes have been provided for tail draggers (models 1 & 1a) and G₂ left and right boxes for nose wheel sailplanes (model 2).

For conventional single main wheel sailplanes, the "left" and "right" boxes are just ignored.

MAIN PINS

The main pin/s may be included in the wing structure weight unless otherwise stated in the manufacturer's maintenance manual. A box is provided for entry of this item unless the manual indicates they are part of the non-lifting parts total for the fuselage and tailplane.

PILOT 1 CALCULATIONS

An additional page has been added to the weight and balance sheet to enable the minimum and maximum pilot weight s to be calculated. The equations shown are for conventional sailplanes with the pilot(s) ahead of the CG limits. Consult AIRW-D011 Weight and Balance of Sailplanes for sailplanes with the pilot(s) behind the CG limits or for unconventional layouts.

Forward the completed pages 3 and 4 of Form W1 to: returns@glidingaustralia.org.

WEIGHT AND BALANCE PROCESS FORM

SCALES

	Make / Model	Owner	Max load	Resolution	Calibration Date
Main(s)					
Tail					

What steps were taken to check and ensure scale performance on the day?

RAW DATA - Component Weights: Weigh each wing OR Fuselage and Tailplane for GWNLP

	Wing	- Port	Wing - S	tarboard	Main Spar	Eucologo	Tailplana
	Inner	Outer	Inner	Outer	Pin(s)	Fuselage	Tailplane
Weigh 1							
Weigh 2							
Average							

RAW DATA – Rigged Sailplane: Averages go to Form W1 and check sum. Check on meeting consecutive weighing accuracy requirement.

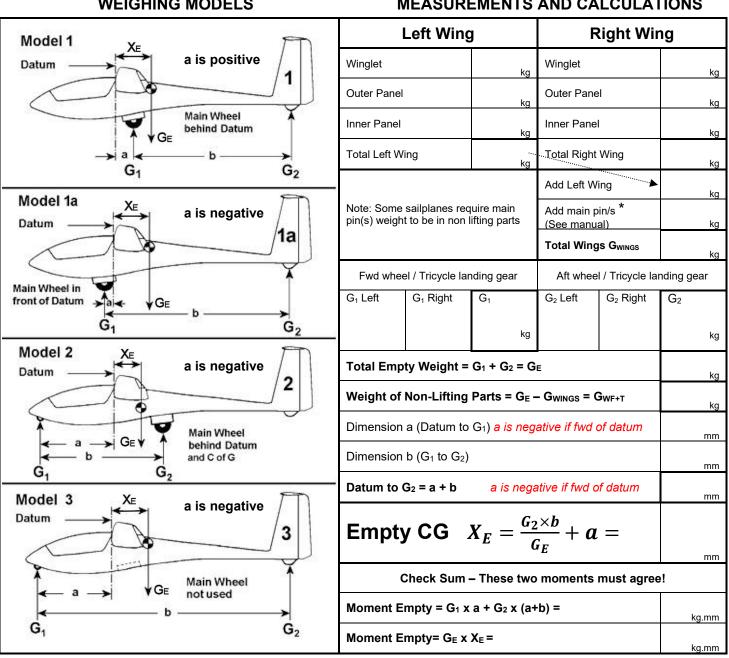
		G ₁		G ₂	Total
Weig	ıh 1				
Weig	ıh 2				
Aver	age				
Check Weigh 1	1.002 x G₁ Avg		G ₂ Avg + 0.1		
and Weigh 2 within tolerances	0.998 x G₁ Avg		G ₂ Avg - 0.1		

The consecutive Weigh 1 and Weigh 2 readings must be within the tolerances detailed in MOSP 3 Section 20 May 2023 (or later).

RESULTS:

	Weight empty	CofG	а	b
Previous Weigh Date:	kg	mm	mm	mm
Current Weight	kg	mm	mm	mm

Compare the measured a and b with the previous measured values to validate the a and b used. Discrepancies may require remeasuring to determine the issue(s) or consulting earlier weighs (if available).


may require remeasuring to determine the issu	de(s) or consulting earlier we	signs (ii avaliable).
Do the changes between the new weigh and the explanation?		sonable
Present and record the placards which flow fro	om this weighing:	
Independent checking of results and placards	caried out?	
W&B Authority signature	Member No	_Date
Circle authority level >> Basic Advanced		

\wedge	FORM W1 SAILPLANE / POWERE	D SAILPLANE WEIGHING R	ECORD	GFA Form W1 Rev.2 01.06.2023
GLIDING	Scales used:	Place:	Date:/	
AUSTRALIA	Calibration date:	Level Ref:	Datum:	

	SAILPLANE / POWERE	ED SA	AILPLANE DE	TAILS	3		
Туре		C of R. No.	G	Reg. VH -		Other Marks	

WEIGHING MODELS

MEASUREMENTS AND CALCULATIONS

LOGBOOK ENTRY			
Empty Weight	kg	CG Arm	mm
Moment Empty	kg.mm	Weight of Non-Lifting Parts	kg
Weighed by Name, Member No:		Date	
Calculation checked by Name, Member No:		Date	

Return this page to returns@glidingaustralia.org

DATA FR	ОМ ТҮРЕ	CERTIFICAT	E DATA SHE	ET OR FLI	GHT MANUAL
Max Weight		G _{MAUW}			kg
Max Weight without Wa	ter Ballas	tG _{MWDRY}			kg
Max Weight of Non Lifti	ng Parts	GMWNLP			kg
Fwd CG Limit		XFWD			mm
Aft CG Limit		Xaft			mm
Safe Aft Limit (if applica	ble)	X _{SAFEAFT} = X _{AI}	FT − 0.05 (Х _{АР}	T- X _{FWD}) =	mm
P1 Arm		X _{P1}			mm
(For Co	nvention	MINIMUM F al Single Seat	PILOT 1 WEIG t and Tander	_	t Sailplanes)
$P_{1MIN} = \frac{G_E \times (X_E - X_E)}{(X_{AFT} - X_E)}$	$\frac{X_{AFT}}{P_1}$		_) =	kg
(For Co	nvention	MAXIMUM I al Single Seat	PILOT 1 WEI t and Tander		t Sailplanes)
Maximum all up weight $P_{1MAX} = G_{MAUW} -$	G_E		_	=	kg
Maximum dry weight $P_{1MAX} = G_{MWDRY} -$	G_E		_	=	kg
Maximum of Non Lifting $P_{1MAX} = G_{MWNLP} - G$			_	=	kg
Forward Centre of Grav $P_{1MAX} = \frac{G_E \times (X_E - X_E)}{(X_{FWD} - X_E)}$,	×(_) =	kg
Seat Limit					kg
Select the smallest valu	e of P _{1MA}	x from above		P _{1MAX} =	kg
		СНЕ	ECK SUM		
Empty Aircraft (from page 2 results)	Weight G _E				Empty Moment
Min Pilot Weight	P _{1MIN}		Pilot Arm X _{P1}		Pilot Moment = P _{1MIN} x X _{P1}
Calculated Arm must be equal or less than X _{AFT} (or X _{SAFEAFT} if used)!	Total Weig	ıht	Arm = Total Mome	ent / Total Weight	Total Moment

A similar check can be done using the P_{1MAX} and the calculated arm must be equal or greater X_{FWD}.

Return this page to returns@glidingaustralia.org

RECORD OF SAILPLANE CONFIGURATION					
VH-	Date:	Name:			
Front / Le	eft Cockpit	Rear / Right Cockpit			
Item	Model	Item	Model		
Airspeed Indicator		Airspeed Indicator			
Altimeter		Altimeter			
Pneumatic Vario		Pneumatic Vario			
Elec vario - meter (1)		Elec vario - meter (1)			
Elec vario - meter (2)		Elec vario - meter (2)			
Flight computer display		Flight computer display			
Engine control unit		Engine control unit			
Radio		Radio (Repeater)			
Transponder		Transponder			
Flarm display		Flarm display			
Compass		Compass			
OAT gauge		OAT gauge			
Flap position indicator		Flap position indicator			
Pneumatic vario flask		Pneumatic vario flask			
Emergency Locator ELT		Emergency Locator ELT			
Directional gyro / turn & slip		Directional gyro / turn & slip			
ADS-B unit (Rx or Rx & Tx)		ADS-B unit (Rx or Rx & Tx)			
G Meter		G Meter(s)			
Flarm module		Flarm module			
Microphone(s)		Microphone(s)			
Loudspeaker(s)		Loudspeaker(s)			
Headset(s)		Headset(s)			
Oxygen regulator		Oxygen regulator			
Seat harness		Seat harness			
Seat back		Seat back			
Head rest		Head rest			
Cushions		Cushions			

Keep this page with weigh results in sailplane records

Fuselage, Tail and Wings					
VH-	Date:	Name:			
Item	Model / Location	Weight (if req'd)	Arm (if req'd)		
Tie down kit					
Oxygen bottle					
Release – nose / aerotow					
Release – belly / winch					
Tail Parachute					
Battery – main 1					
Battery – main 2					
Battery – main 3					
Battery – tail 1					
Battery – tail 2					
Solar module(s)					
Solar regulator					
Fuel – fuselage tank	Undrainable fuel				
Fuel – wing tanks(s)	Undrainable fuel				
Oil level					
Coolant level					
Water ballast – tail					
Water ballast - wings					
Fixed ballast weights					

BATTERIES: Record those batteries which are mandatory fitment as part of the empty weight determination. Consider if battery fitment needs detailed placards. Example: If minimum pilot weight was first determined with heavy forward battery(s), a minimum weight pilot flying with light LiFePO4 forward battery(s) (or battery in alternate location) may exceed aft limit.

CONFIGURATION RECORDING IS IMPORTANT. Weighing an aircraft and finding a weight and / or CG change without being able to identify the cause is a serious concern. Tracking the equipment fitted at the time of weighing is an important tool in investigating weight and balance changes.

Keep this page with weigh results in sailplane records